
Multiple Positional Self-Attention Network for Text Classification

Biyun Dai, Jinlong Li, Ruoyi Xu
School of Data Science

University of Science and Technology of China
Hefei, Anhui, China

byd@mail.ustc.edu.cn jlli@ustc.edu.cn xuruoyi@mail.ustc.edu.cn

Abstract
Self-attention mechanisms have recently caused many con-
cerns on Natural Language Processing (NLP) tasks. Relative
positional information is important to self-attention mecha-
nisms. We propose Faraway Mask focusing on the (2m+1)-
gram words and Scaled-Distance Mask putting the loga-
rithmic distance punishment to avoid and weaken the self-
attention of distant words respectively. To exploit differ-
ent masks, we present Positional Self-Attention Layer for
generating different Masked-Self-Attentions and a following
Position-Fusion Layer in which fused positional information
multiplies the Masked-Self-Attentions for generating sentence
embeddings. To evaluate our sentence embeddings approach
Multiple Positional Self-Attention Network (MPSAN), we
perform the comparison experiments on sentiment analysis,
semantic relatedness and sentence classification tasks. The
result shows that our MPSAN outperforms state-of-the-art
methods on five datasets and the test accuracy is improved
by 0.81%, 0.6% on SST, CR datasets, respectively. In ad-
dition, we reduce training parameters and improve the time
efficiency of MPSAN by lowering the dimension number of
self-attention and simplifying fusion mechanism.

Introduction
Context representation provides critical information in Nat-
ural Language Processing (NLP) tasks. For different tasks
and data, there are two commonly used architectures: Con-
volutional Neural Networks (CNN) (Kim 2014) and Recur-
rent Neural Networks (RNN) (Chung et al. 2014). RNN
captures long-range dependencies through sequential archi-
tecture while CNN captures phrase features by encoding
n-grams. More recently, attention mechanisms have been
widely used in NLP tasks, such as neural machine trans-
lation (Luong, Pham, and Manning 2015) and sentiment
analysis (Kokkinos and Potamianos 2017) etc. In contrast
to RNN and CNN, attention mechanisms (Bahdanau, Cho,
and Bengio 2015) allow modeling of dependencies without
regard to the distances of the words in the input or output
sequences (Kim et al. 2017).

As a variant of attention mechanism, self-attention has
been used successfully in a variety of tasks including read-
ing comprehension (Cheng, Dong, and Lapata 2016) and ab-
stractive summarization (Parikh et al. 2016) etc. Recently,
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self-attention was used to replace RNN in context-aware en-
coding for learning long-range dependencies (Vaswani et al.
2017). The ability to learn long-range dependencies is af-
fected by the length of the paths along which the forward and
backward signals propagate in the network. The shorter path
between tokens is, the easier it is to learn long-range depen-
dency (Hochreiter et al. 2001), and self-attention works well
in learning long-range dependencies (Vaswani et al. 2017).

However, there are two issues of self-attention mechanism
to be addressed. One is that contrast to RNN, self-attention
treats all input tokens as identical individuals and loses the
temporal order information (Shen et al. 2018a), which might
be important to the NLP tasks. Another is that the posi-
tional information is lost, i.e. self-attention does not take
into account different importance to the tokens of different
distances. For instance, adjacent words contribute more se-
mantically to current phrase than distant ones (Guo, Zhang,
and Liu 2019).

To address the first issue, there is a way of adding direc-
tional masks to furnish temporal order information (Shen
et al. 2018a), but it didn’t consider positional information.
About the second issue, we roughly classify several methods
into two categories: adaptive positional information method
(Gehring et al. 2017) and pre-tuned positional information
method (Guo, Zhang, and Liu 2019). Compared to adap-
tive positional information method, the pre-tuned method
can’t extract different positional information for different
sentences. While compared to pre-tuned method, adaptive
method lacks scalability. And all these pre-tuned methods
and adaptive methods only explore positional information
and overlook the temporal order information.

Therefore, we combined the adaptive and the pre-tuned
positional information methods, temporal order information
and positional information into a single model to benefit
each other and to overcoming their inherent disadvantages.
In our MPSAN, we designed two new masks that focus on
distance information. And to integrate different masks con-
taining different temporal order and positional information,
we proposed a new Position-Fusion Layer with 3.24million
fewer parameters than the Fusion Gate in DISAN (Shen et
al. 2018a).

In general, our contributions are four-fold:

• We proposed two new positional masks: Faraway Mask
which focuses only on the (2m + 1)-gram words and ig-



nores the influence of the word itself, and Scaled-Distance
Mask which puts the logarithmic distance punishment.
The two masks avoid and weaken the self-attention of dis-
tant words, respectively.

• We presented the Position-Fusion Layer which generates
a weighted sum of Masked-Self-Attentions and Tokens-
Position-Weight. This layer could balance the impact
among different masks, and would make the combination
of the masks more suitable for the current sentence adap-
tively.

• We reduced training parameters by lowering the dimen-
sion number of self-attention and designing a novel fu-
sion mechanism with softmax function in Positional Self-
Attention Layer and Position-Fusion Layer respectively,
and achieved higher test accuracy at the same time.

• We evaluated our MPSAN on sentiment analysis, seman-
tic relatedness and sentence classification tasks. The re-
sults show that our MPSAN achieves better performances
than the state-of-the-art self-attention based models on
SST, CR datasets, with the test accuracies improved by
0.81%, 0.6%, respectively.

Related Work
As mentioned before, self-attention loses temporal order in-
formation and positional information, which might be cru-
cial and has attracted many researchers to study.

To encode temporal order information into attention-
based models, Shen et al. proposed directional mask in
Directional Self-Attention Network (DiSAN) (Shen et al.
2018a). In DiSAN, by adding the forward and backward
directional masks to the logit of self-attention, words in a
specific direction in the sentence were masked to avoid self-
attention. In forward mask, there was only attention of later
token j to early token i, and vice versa in backward mask,
which achieved the injection of temporal order information.
Recently, Shen et al. has developed the Reinforced Self-
Attention Network (ReSAN) (Shen et al. 2018b), in which
reinforcement learning was used to select tokens from two
copies (head tokens and dependent tokens) of the input se-
quence in parallel. Furthermore, ReSAN used self-attention
to model the sparse dependencies between the head and de-
pendent tokens. In a nutshell, the reinforcement learning in
ReSAN is employed to catch the temporal order information
between tokens. However, the two models above all didn’t
consider positional information.

To inject positional information, there has been several
ways, which can be roughly classified into two categories:
adaptive positional information method and pre-tuned po-
sitional information method. The adaptive positional infor-
mation method represents positional information by some
trainable variables. For example, Gehring et al. proposed an
entirely convolutional and attentional architecture (Gehring
et al. 2017), and to capture positional information, they de-
signed the position embeddings represented by a trainable
embedding matrix. The empirical result shows that the po-
sition embeddings benefit their architecture. And Shaw et
al. also proposed relative position encoding by adding two

trainable vectors to self-attention to model localness (Shaw,
Uszkoreit, and Vaswani 2018).

However, there are two possible defects with adaptive po-
sitional information method. One is obviously the loss of
order information (Shen et al. 2018a), which also applies in
the following pre-tuned method. In Gehring’s model, adding
position embeddings only plays a role in distinguishing dif-
ferent sequence positions. Another is the lack of scalabil-
ity (Vaswani et al. 2017), which will occur when the well-
trained models deal with longer sentences that have never
been processed. As a result, the words at the end of the sen-
tence will be randomly assigned positional information.

By contrast, pre-tuned positional information method rep-
resents positional information by a variable which could not
be altered in training progress. Based on Gehring’s adap-
tive position embeddings, Vaswani et al. used the sine and
cosine functions to generate position embeddings (Vaswani
et al. 2017). And motivated by DISAN, Im et al. pro-
posed Distance Mask (Im and Cho 2017), which consid-
ers the words’ relative distance information through adding
distance-based punishment. The empirical result showed
that Distance Mask achieves a better performance on long
sentences. More recently, Yang et al. and Guo et al. intro-
duced a Gaussian prior to self-attention, in which adjacent
words contributed more semantically to central words (Yang
et al. 2018) (Guo, Zhang, and Liu 2019). The former is ef-
fective on NMT tasks, while the latter achieves new SOTA
performance on NLI tasks. Yang et al. also proposed a novel
Convolutional Self-Attention Network (CSAN) to capture
neighboring dependencies (Yang et al. 2019).

Although we have seen several ways from above to fetch
positional information and temporal order information from
sentences, how to integrate different positional information
is also very important to sentence representation. To real-
ize information fusion, Shen et al. (Shen et al. 2018a) and
Im et al. (Im and Cho 2017) all designed a Fusion Gate,
where they used sigmoid function to combine the Masked-
Self-Attention output and the hidden state. And then the con-
catenation of Backward and Forward self-attentions is used
as input to the Multi-Dimensional Attention, which is 3-
layer fully connected structure with unchanged size of hid-
den nodes and constant size of output nodes. Apparently,
this way brings about too many parameters and can be opti-
mized.

Multiple Positional Self-Attention Network
Overall Architecture
An overview of MPSAN is illustrated in Figure 1. Given an
input sentence, we first use pre-trained word embeddings to
obtain the embedding representation. Then the embedding
representation is utilized by the Positional Self-Attention
Layer to obtain multiple positional representations for one
sentence through applying different masks on self-attention
including Faraway Mask, Backward Mask, Forward Mask,
Distance Mask and Scaled-Distance Mask. The multiple po-
sitional representations are passed to the Position-Fusion
Layer, and their weighted sum is treated as the sentence em-
beddings. Finally, a multi-dimensional attention is employed



before a softmax classifier.

Figure 1: Structure of the MPSAN

Positional Self-Attention Layer
Positional Self-Attention Layer is composed by multiple
Masked Positional Self-Attention units, which is illustrated
in Figure 2. Before computing self-attention, we apply the
linear function with an activation to calculate the sentence
dense representation h, defined as formula (1):

h = [h1, h2, · · · , hn] = σ(WT
h w + bh) (1)

where Wh ∈ Rde×dh and bh ∈ Rdh are trainable variables,
T is the transpose operation, de, dh, and n are the size of
word embeddings, the size of hidden nodes and the number
of words, respectively. w = [w1, w2, · · · , wn] denotes the
dense representation of the input sentence and σ(·) indicates
activation function.

Figure 2: Masked Positional Self-Attention

Self-Attention Given the embedding representation of a
source sequence h = [h1, h2, · · · , hn], a score between hi
and hj is computed by a compatibility function f(hi, hj),
which measures the dependency between hi and hj , or the

self-attention of hj to hi. Then the scores [f(hi, hj)]ni=1 are
mapped to the probability distribution p(z|hj) for a given
hj by a softmax function. Here p(z = i|hj) indicates the
importance of hi to hj where z = i. In a word, large p(z =
i|hj) means hi affects more on hj , which makes it possible
to extract the relationship between word pairs without the
limitation of distance. The above process can be summarized
by the following formulas (2), (3), (4).

p(z|hj) = softmax([f(hi, hj)]
n
i=1) (2)

sj =

n∑
i=1

p(z = i|hj)hi = Ei∼p(z|hj)(hi) (3)

Self-Attention = [s1, s2, · · · , sn] (4)
The formulas (2), (3), (4) can be summarized as (5):

Self-Attention(h) = [

n∑
i=1

exp(f(hi, hj))hi∑n
k=1 exp(f(hk, hj))

]nj=1 (5)

There are several types of self-attention, and they share
the same form of self-attention, but are different in the com-
patibility function f(hi, hj). In our MPSAN, the compati-
bility function is defined by formula (6):

f(hi, hj) = σ((Uhi + V hj + b)/c) (6)

where U, V ∈ Rdh , b ∈ R are trainable parameters, c is a
hyper-parameter and it can be ||hi|| · ||hj || or a constant. In
our model, we set c = 5 to obtain stable output.

Positional Masks The positional masks are applied to dis-
card some elements in specific locations of self-attention by
adding −∞ to the compatibility functions.

Then the Masked-Self-Attention (MSA) can be written as
formula (7):

s = MSA(h) = [

n∑
i=1

exp(f(hi, hj) +Mij)hi∑n
k=1 exp(f(hk, hj) +Mkj)

]nj=1

(7)
If Mij = −∞, we have p(z = i|hj) = 0, so the self-
attention of hi to hj is not considered. By doing that, we can
focus on the special pairs of words which we are interested
in.

Here are five types of the positional mask we considered
in our MPSAN.

Faraway Mask The Faraway Mask Mfa(m)
ij , shown as

formula (8), focuses on the (2m + 1)-gram words, and ig-
nores the influence of the word itself.

M
fa(m)
ij =

{
0 , |i− j| ≤ m, i 6= j

−∞ , otherwise
(8)

Backward Mask The Backward MaskM bw
ij , shown as for-

mula (9), prevents words that appear after the target word.

M bw
ij =

{
0 , i < j

−∞ , otherwise
(9)

Forward Mask The Forward Mask Mfw
ij , shown as for-

mula (10), is the same with the Backward Mask except dif-
ferent direction.

Mfw
ij =

{
0 , i > j

−∞ , otherwise
(10)



Distance Mask The Distance Mask Md
ij , shown as

formula (11), adds the distance punishment to the self-
attention. The punishment score between the ith word and
the jth word is defined by −|i− j|.

Md
ij =

{
−|i− j| , i 6= j

0 , otherwise
(11)

Scaled-Distance Mask In contrast to Distance Mask, the
Scaled-Distance Mask adopts − log |i − j| for punishment
score between the ith word and the jth word, shown as for-
mula (12). This logarithmic distance is steep when i and j
are close and is smooth when i and j are distant. By adding
Scaled-Distance Mask to the compatibility function, the far-
ther the word pair is, the smaller the self-attention. It means,
as the distance from the target word increases, the influence
of nearby words has a significant decline, and the influence
of distant words is almost the same.

Msd
ij =

{
− log |i− j| , i 6= j

0 , otherwise
(12)

Because of the Distance Mask and Scaled-Distance Mask
are the penalties of self-attentions, we will not use them in-
dependently, instead, we will apply multiple masks through
adding Mij to f(hi, hj). For example, sfa(m)+sd indicates
using (2m + 1)-gram Faraway Mask and Scaled-Distance
Mask on self-attention in the same time.

Our MPSAN applies two Faraway Masks Mfa(2),
Mfa(3), Backward Mask M bw and Forward Mask Mfw.
In addition, Scaled-Distance Mask Msd is added in Back-
ward/Forward Mask.

Position-Fusion Layer
Since different positional information has been extracted in
Positional Self-Attention Layer, the fusion of different posi-
tional information could be important to sentence represen-
tation. We supposed that every word in a sentence has a cer-
tain positional information and the representationw of orig-
inal input sentence contains the most abundant positional in-
formation. So here we use softmax function to extract the
positional information from original input tokens, which we
called Tokens-Position-Weight, shown as formula (13):

a = softmax(WT
F w + bF ) (13)

where w ∈ Rde×n is the sentence representation composed
of word embeddings, WF ∈ Rde×k and bF ∈ Rk×n are
the weight and bias of the Position-Fusion Layer, k is the
number of multiple self-attentions. The softmax function is
applied on each column of WT

F w + bF .
The output of Position-Fusion Layer is a weighted sum of

Masked-Self-Attentions and Tokens-Position-Weight, which
is represented by formula (14).

o = [s(1); s(2); · · · ; s(k−1);w] ∗ a (14)

where s(1); s(2); · · · ; s(k−1) ∈ Rdh×n are the multi-
ple Masked-Self-Attentions from Positional Self-Attention
Layer, w ∈ Rde×n is the sentence representation composed
of word embeddings, and a is the Tokens-Position-Weight in

Model |θ| T(s) Test Acc(%)
RNNa - - 43.2
MV-RNNa - - 44.4
RNTNa - - 45.7
Bi-LSTMb - - 49.8
Tree-LSTMc - - 51.0
CNN-non-staticd - - 48.0
CNN-Tensore - - 51.2
BLSLf - - 51.1
LR-Bi-LSTMg - - 50.6

Self-Attention Based Models

Multi-head-SANh 1.5m 432 49.41
Bi-LSTM-SANh 2.2m 1704 49.95
DiSANh 1.8m 485 51.72
Bi-BloSANi 2.2m 425 51.49

Our MPSAN 1.1m 359 52.53

Table 1: SST results. |θ|: the number of parameters (mil-
lion level, not including word embedding part). T(s): aver-
age seconds per epoch. Test Acc(%): the accuracy on test
set. ”-” indicates that the data is not mentioned in the corre-
sponding paper. The test accuracies of DiSAN, Bi-BloSAN
and our MPSAN are the best results of ten runs, while other
accuracies are extracted from the corresponding papers. The
number of parameters and the average seconds per epoch of
self-attention based models are obtained by the single run
of their source codes. a (Socher et al. 2013), b (Li et al.
2015), c (Tai, Socher, and Manning 2015), d (Kim 2014), e

(Lei, Barzilay, and Jaakkola 2015), f (Teng, Vo, and Zhang
2016), g (Qian et al. 2016), h (Shen et al. 2018a), i (Shen et
al. 2018c).

(13). In practice, we set de = dh to make s(1); · · · ; s(k−1)
andw can be weighted together, and the output o ∈ Rdh×n.

We supposed the self-attention results have multiple infor-
mation in different dimensions, so we use dh groups of (13).
Considering we have decided the combination of different
masks in subsection ’Positional Self-Attention Layer’, we
have a ∈ R5dh×n. The rewriting of formula (13), (14) are
as follows:

a = softmax(WT
P w + bP ) (15)

o = [sfa(2); sfa(3); sbw+sd; sfw+sd;w] ∗ a (16)

where w ∈ Rde×n is the sentence representation composed
of word embeddings, WP ∈ Rde×5dh and bF ∈ R5dh×n

are the weight and bias of the Position-Fusion Layer, and a
is in R5dh×n. sfa(2), sfa(3), sbw+sd, sfw+sd ∈ Rdh×n are
four results of Masked-Self-Attentions. Finally, o ∈ Rdh×n

is the weighted sum.

Experiments and Results
We evaluate our model on six datasets including one senti-
ment analysis task and four sentence classification tasks and
one semantic relatedness task.



For all tasks except semantic relatedness task, we use the
pre-trained vectors GloVe-6B-300D (Pennington, Socher,
and Manning 2014) to initialize word embeddings in our
MPSAN. As for Out-Of-Vocabulary (OOV) words in train-
ing set, we use uniform distribution between (−0.05, 0.05)
to initialize those words randomly. We set the hidden units
number to 300, which is equal to the word embedding size.
All weight matrices in our model are initialized by Xavier
(Glorot and Bengio 2010) initialization and all biases are
zero-initialized. We add dropouts between the layers of our
model, and the dropout-ratio is 0.7. All the activation func-
tions σ(·) are Exponential Linear Unit (ELU) if they are not
specified. We use the sum of cross-entropy loss and L2 reg-
ularization penalty as our loss function, and the L2 regu-
larization decay factor is 10−7. As for learning method, we
use Adadelta, which is an optimizer of stochastic gradient
descent, to minimize the loss function. The batch size of
training is 64 and the learning rate is 0.5. All the training
progress is completed on a single NVidia GTX-1080Ti GPU
card with TensorFlow-1.4.0.

While in the semantic relatedness task, the loss function
is the sum of KL-divergence and L2 regularization penalty.
The dropout is set to 0.55, the L2 regularization weight de-
cay factor is 5 ∗ 10−4, and the learning rate is set to 0.7.
The word embeddings and other network parameters are the
same as other tasks.

Sentiment Analysis
The aim of sentiment analysis is to identify the emotion
of a sentence. We use Stanford Sentiment Treebank (SST)
for sentiment analysis (Socher et al. 2013). SST consists
of 8544/1101/2210 (train/dev/test) sentences with five fine-
grained labels including very positive, positive, neutral, neg-
ative and very negative.

Compared the test accuracy from the official leaderboard
of SST in Table 1, MPSAN improves the best test accu-
racy of attention based models (achieved by DiSAN) by
a significant gap of 0.81%. Moreover, we compare MP-
SAN with RNN-based models, including RNN, MV-RNN,
RNTN, Bi-LSTM and Tree-LSTM, and MPSAN outper-
forms them by 9.33%, 8.13%, 6.83%, 2.73%, 1.53%, re-
spectively. Furthermore, MPSAN achieves better test ac-
curacies than CNN-based models like CNN-non-static and
CNN-Tensor by 4.53% and 1.33%.

Mask Performance Analysis To evaluate the perfor-
mance of masks, we make a comparison between different
masks in Table 2. Except MPSAN, the seven models in Ta-
ble 2 use different combinations of various masks.

BW&FW: Compared with Model 0, Model 1 has BW
and FW, having 2.35% improvement. In addition, based on
Model 3, Model 4 adds BW and FW, and have 0.86% im-
provement. So we come to the conclusion that employing
BW and FW can improve the performance of the model.

FA: Compared with Model 0, Model 3 has two FAs (Far-
away Mask with m = 2 and m = 3, recorded as FA(2)
and FA(3), respectively), having 1.94% improvement. In
other models, Model 4’s test accuracy is 0.45% higher than
Model 1’s, and our MPSAN’s test accuracy is 0.72% higher

Model BW FW FA Test Acc(%)
0 - - - 49.19
1

√ √
- 51.54

2
√

+SD
√

+SD - 51.81
3 - - 2,3 51.13
4

√ √
2,3 51.99

5
√

+SD
√

+SD 2+SD,3+SD 52.48
6

√
+D

√
+D 2,3 52.17

MPSAN
√

+SD
√

+SD 2,3 52.53

Table 2: Mask study. BW (Backward Mask), FW (For-
ward Mask), FA (Faraway Mask), D (Distance Mask),
SD (Scaled-Distance Mask) represent different masks men-
tioned in subsection ’Positional Self-Attention Layer’. Un-
der the column FA, ”2” means useMfa(2), and ”2,3” means
use Mfa(2) and Mfa(3) at the same time, but in different
Masked Positional Self-Attention (Figure 2) modules. ”-” in-
dicates that the corresponding mask is not used in the model
while ”

√
” indicates the mask is used. ”+D” and ”+SD”

means adding Distance Mask or Scaled-Distance Mask on
the corresponding mask, respectively. Model 1∼6 have Po-
sitional Self-Attention Layer and Position-Fusion Layer, but
Model 0 don’t. For each model, the accuracy is the best re-
sult of ten runs.

than Model 2’s. The above comparisons indicate that FA can
improve the performance of the model. We don’t use FA(1)
because of the performance of FA(1) is worse than FA(2)
and FA(3). And we find using FA(2) and FA(3) at the
same time is better than using them separately. Maybe we
can find a better mask combination, but we don’t study this
further in this paper.

D/SD: Compared with Model 4, Model 6 adds Distance
Mask on BW and FW having 0.18% improvement and our
MPSAN adds Scaled-Distance Mask on BW and FW having
0.54% improvement. So adding distance penalty on BW and
FW can improve the performance of the model and adding
Scaled-Distance Mask is slightly better than adding Dis-
tance Mask on BW and FW. Compared with our MPSAN,
we also add Scaled-Distance Mask on two FAs in Model
5, but the test accuracy of the model slightly reduced. This
may be because the FA extracts local information, while
the BW and FW extracts long-range positional information,
and the distance penalty is more suitable for long-range po-
sitional information. In addition, compared with Distance
Mask, Scaled-Distance Mask is more suitable for the extrac-
tion of long-range positional information. So adding Scaled-
Distance Mask on BW and FW can improve the perfor-
mance of the model.

In summary, various masks have different capabilities,
and a good combination is better than using them separately.

Techniques for Reducing Parameters Although the
combination of different masks can achieve better results,
the number of training parameters will increase as the num-
ber of masks increases. Excessive parameters can lead to
training costs increasing, and even cause memory over-
flow that make the model untrainable. We propose two



techniques in Position-Fusion Layer and Positional Self-
Attention Layer respectively to reduce the parameters of the
model.

Parameter Reduction for Fusion Our Tokens-Position-
Weight is a natural extension of the Fusion Gate in DiSAN.
The parameters we consider here include the fusion part and
Multi-Dimensional Attention (MDA) part.

In Fusion Gate, the Masked-Self-Attention output s in for-
mula (7) and the input h are combined together through sig-
moid function, and the number of parameters is 2 × 2d2h,
where dh is the size of hidden nodes. Then the output of
self-attention layer is the concatenation of Backward and
Forward self-attentions, so the size of output vector nodes
is 2dh. After that, the MDA is applied, which is 3-layer fully
connected structure with unchanged size of hidden nodes
and constant size of output nodes, so the number of parame-
ters is 2× (2dh)

2+(2dh)× dh. The total number of param-
eters is 2× 2d2h + 2× (2dh)

2 + (2dh)× dh = 14d2h.
In contrast, as for our Tokens-Position-Weight, the For-

ward Masked-Self-Attention output sfw, the Backward
Masked-Self-Attention output sbw and the sentence repre-
sentationw can be combined together through softmax func-
tion, so the size of output vector nodes is dh, half of Fusion
Gate. The total number of parameters is 3× d2h + 2× d2h +
dh × dh = 6d2h.

If now we have k Masked-Self-Attentions, then the num-
ber of parameters in Fusion Gate and MDA are k × 2d2h +
2× (kdh)

2 + (kdh)× dh = (2k2 + 3k)d2h, while the num-
ber of parameters in Tokens-Position-Weight and MDA are
(k+1)×d2h+2×d2h+dh×dh = (k+4)d2h. Here we don’t
consider bias weights because they can’t affect the quantity
level of the parameters. In our MPSAN, we set k = 4 and
dh = 300, so the parameter number of Fusion Gate and
MDA is (2k2 + 2k − 4)d2h = 3.24million more than the
parameter number of Tokens-Position-Weight and MDA.

We evaluated the performance of the models on SST
dataset in Table 3.

Model |θ| T(s) Test Acc(%)
B&F + FG 1.45m 298 51.36
B&F + TPW 0.73m 276 51.76
mul + FG 4.33m 497 52.39
mul + TPW 1.09m 359 52.53

Table 3: A study on the fusion way. B&F indicates using
Backward and Forward Masked-Self-Attention introduced in
subsection ’Positional Self-Attention Layer’ while ”mul” in-
dicates using the masks combination introduced in Mask
Performance Analysis. FG indicates Fusion Gate, while
TPW indicates Tokens-Position-Weight. ”mul + TPW” is our
MPSAN. The test accuracies are the best results of ten runs.
The number of parameters |θ| and the average seconds per
epoch T(s) are obtained by the single run.

Compared to Fusion Gate methods, our Tokens-Position-
Weight methods have a significant reduction in model pa-
rameters and a slightly decrease in time cost. In the mean-
time, our Tokens-Position-Weight can also bring some im-

provement on the test accuracy of the model.
Parameter Reduction in Compatibility Function We

have f(hi, hj) ∈ R in formula (5), and we call it one-
dimensional self-attention, recorded as 1-D. When U, V ∈
Rdh×dh , b ∈ Rdh , we have f(hi, hj) ∈ Rdh , which is multi-
dimensional self-attention, and we record it as M-D. We ex-
plored the effect of using 1-D or M-D in Table 4.

Model |θ| T(s) Test Acc(%)
M-D + B&F + TPW 1.09m 466 51.95
1-D + B&F + TPW 0.73m 276 51.76
M-D + mul + TPW 1.81m 953 52.67
1-D + mul + TPW 1.09m 359 52.53

Table 4: A study on the weights of the compatibility func-
tion. ”1-D + mul + TPW” is our MPSAN. The test accura-
cies are the best results of ten runs. The number of parame-
ters and the average seconds per epoch are obtained by the
single run.

From Table 4, we can conclude that using 1-D instead of
M-D not only reduces the number of parameters, but also
makes the model training faster and the performances of the
models are similar. In a short word, reducing multiple posi-
tional information seems to be more effective than increas-
ing the dimension number of self-attention so we use 1-D in
our model.

Model |θ| T(s) Test Acc(%)
MPSAN 1.09m 359 52.53
MPSAN w/o fusion 0.55m 325 51.22
MPSAN w/o position 0.64m 204 49.19
MPSAN w/o attention 0.09m 115 44.93

Table 5: An ablation study of MPSAN

Component Analysis Furthermore, to evaluate the contri-
bution of each component, we make an ablation study of
MPSAN. As shown in Table 5, we remove each component
one by one and record the number of parameters, average
time per epoch and test accuracy.

In this paragraph, Position Fusion Layer and Positional
Self attention Layer is abbreviated as PFL and PSAL respec-
tively. Based on MPSAN, we remove 1) PFL, 2) PFL and
PSAL, 3) all attention modules. In terms of accuracy, the
results show that 1) attention-based module do contribute
to the prediction and brings 7.6% improvement; 2) using
PFL and PSAL improves accuracy by 3.34%; 3) By remov-
ing PFL from MPSAN, the accuracy declines by 1.31%. In
terms of time cost, it shows that 1) PFL and PSAL occupy
more time but have better test accuracy; 2) applying the PFL
and PSAL takes up negligible time and improves significant
performance.

Sentence Classification
We evaluate our MPSAN on four sentence classification
tasks, and the results are shown in Table 6. Text REtrieval



Model TREC CR MPQA SUBJ
CBOW (Mikolov et al. 2013) 87.3 79.9 86.4 91.3
Skip-thought (Kiros et al. 2015) 92.2 81.3 87.5 93.6
DCNN (Kalchbrenner, Grefenstette, and Blunsom 2014) / / / 93.0
AdaSent (Zhao, Lu, and Poupart 2015) 91.1 (1.0) 83.6 (1.6) 90.4 (0.7) 92.2 (1.2)
Bi-LSTM (Graves, Jaitly, and Mohamed 2013) 94.4 (0.3) 84.6 (1.6) 90.2 (0.9) 94.7 (0.7)
Multi-head (Vaswani et al. 2017) 93.4 (0.4) 82.6 (1.9) 89.8 (1.2) 94.0 (0.8)
DiSAN (Shen et al. 2018a) 94.2 (0.1) 84.8 (2.0) 90.1 (0.4) 94.2 (0.6)
Bi-BloSAN (Shen et al. 2018c) 94.8 (0.2) 84.8 (0.9) 90.4 (0.8) 94.5 (0.5)

MPSAN 94.8 (0.2) 85.4 (1.4) 90.4 (0.8) 94.6 (0.7)

Table 6: Sentence Classification Tasks. Except our MPSAN, the reported accuracies and standard deviations are recorded by
Shen et al. in Bi-BloSAN (Shen et al. 2018c). Except the accuracies on TREC are the mean of five runs, the accuracies on the
other datasets are the mean of 10-fold cross validation. All standard deviations are in parentheses.

Conference (TREC) is a question-type classification dataset
(Li and Roth 2002). Customer Reviews (CR) consist of
the reviews of various products (Hu and Liu 2004). Multi-
Perspective Question Answering (MPQA) dataset is used for
opinion polarity detection subtask in phrase level (Wiebe,
Wilson, and Cardie 2005). SUBJectivity (SUBJ) dataset is
involved in classifying a sentence as being whether subjec-
tive or objective (Pang and Lee 2004). MPSAN achieves the
best prediction accuracy on CR, and state-of-the-art perfor-
mances on TREC and MPQA.

Semantic Relatedness
The aim of semantic relatedness is to predict the simi-
larity degree of a pair of given sentences. We use Sen-
tences Involving Compositional Knowledge (SICK) dataset
for comparison of different methods on semantic relatedness
(Marelli et al. 2014). SICK is composed of 4500/500/4927
(train/dev/test) sentence pairs and denotes the similarity de-
gree by a real number in [1,2,3,4,5].

We give the results of SICK dataset in Table 7, whose de-
tails are shown at the front. The results show that MPSAN
outperforms the previous models in terms of MSE index,
which implies that although our MPSAN has slightly lower
correlation, but it has better accuracy in describing experi-
ment sentence pairs.

Model Pearson’s r Spearman’s ρ MSE
Bi-LSTMa 0.8473 0.7913 0.3276
Multi-CNNb 0.8374 0.7793 0.3395
Hrchy-CNNc 0.8436 0.7874 0.3162
Multi-headd 0.8521 0.7942 0.3258
DISANe 0.8695 0.8139 0.2879
Bi-BloSANf 0.8616 0.8038 0.3008

MPSAN 0.8674 0.8119 0.2612

Table 7: SICK results. The reported accuracies are the mean
of five runs. a(Graves, Jaitly, and Mohamed 2013), b(Kim
2014), c(Gehring et al. 2017), d(Vaswani et al. 2017), e(Shen
et al. 2018a), f (Shen et al. 2018c)

Conclusion
In this paper, we have proposed two new positional masks
(Faraway Mask and Scaled-Distance Mask) to extract word
positional relationships in sentences. Moreover, combin-
ing with Forward Mask and Backward Mask, we present a
Tokens-Position-Weight to balance the impact between dif-
ferent masks. On the other hand, our MPSAN achieves
competitive performances on five open datasets. MPSAN is
much faster and more memory efficient than the state-of-the-
art self-attention based models like DiSAN, Bi-BloSAN. In
the future work, we attempt to find a more general pattern
to combine self-attentions and masks to avoid complexity in
mask combination method. And we will verify the perfor-
mance of our MPSAN on more tasks like Natural Language
Inference and Reading Comprehension.
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